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Abstract
In this workshop we will make modular origami structures that bend and collapse, commonly known as flexiballs.
However, we will use an improved and simplified unit that makes for better results. Within the 90 minutes of the
workshop, we should be able to make the 12-unit cube/rhombohedron and/or the 24-unit rhombic dodecahedron:
these are degree-3 and degree-4 polar zonohedra (PZ). 20 units make a partial icosahedron. Experienced folders may
wish to begin to make the 40-unit degree-5 PZ rhombic icosahedron or 60-unit rhombic triacontahedron. Practical
considerations are the number of units and desired colours. One classic colouring scheme is to use the same colour
for parallel edges, another is the same colour for edges meeting at a vertex.

Introduction

Polyhedra are natural subjects for modular origami. The Platonic solids are popular, as are some Archimedean
solids [5]. Typically, the origami units act as either face, vertex or edge units. To make a given polyhedron,
we might choose face units as this usually minimises the number of units needed. Choosing edge units
usually maximises the number of units needed, so what are the benefits of this apparently more onerous
approach? One benefit is the versatility of edge units: the same unit can make different angles by assembling
different numbers of units at a vertex. Another benefit is the edge units can be used to make wireframe
origami, typically polyhedral frames that interpenetrate each other, e.g. five intersecting tetrahedra and other
polypolyhedra [7, 6].

However, some edge units can be awkward to assemble at a vertex: it can be like trying to close a door to
a room from the outside – but only using the door handle inside the room. The flexible nature of zonohedra
means that the vertex can be isolated and worked on more easily, e.g. see the right hand tip of Figure 1).

Furthermore, the vertices of edge units can flex leading to a form of action modular origami [3, 4].

Figure 1: Rhombic Triacontahedron collapsing



Number of Units and Colours

First, choose the number of units that you can make in the given time. Within the workshop, you should be
able to make at least 12 units and have sufficient time to assemble the cube (Figure 2). You may have enough
time to try the 24-unit rhombic dodecahedron or the 20-unit partial icosahedron (Figures 8 and 9).

A simple colouring scheme is to make all units the same colour. A little more sophisticated is to use
the same colour for edges meeting at some vertices. However, I feel it is most instructive to make parallel
edges the same colour (and sometimes the most challenging). Here are the numbers needed for the three
most appealing constructions:

the first few module steps easier.

Figure 2: Using the same colour for parallel edges.
Left: cube. Middle: rhombic dodecahedron. Right: rhombic triacontahedron.

Top row: each edge of a star is a different colour.
Bottom row: opposite edges of each rhombus are the same colour.

Cube

Make 12 units in three colours. All vertices have three edges meeting. For convenience, use three sheets in
different colours. Before cutting each sheet into quarters, divide the short edge into eighths: this precreasing
makes the first few module steps easier.

Rhombic Dodecahedron

Make 24 units in four colours. Vertices have either three or four edges meeting.

Rhombic Triacontahedron

Make 60 units in six colours. Vertices have either three or five edges meeting. Think of the starting vertex
as the north pole: the sixth colour appears at the equator and the south pole has the colours of the north pole
in reverse order.



Zonohedra

The cube and rhombic dodecahedron are 3-fold and 4-fold polar zonohedra (PZ), respectively. However, the
rhombic triacontahedron is a zonohedron but not a PZ: a 5-fold PZ is a rhombic icosahedron (Figure 3). For
a rhombic icosahedron, 5 faces meet at the poles, 3 meet at the vertices next to the poles and 4 faces meet at
all other vertices. A zone is the set of faces sharing one edge direction, i.e. the edges are parallel. Half of a
a zone is highlighted below left. Table 1 shows the number of faces, edges and vertices of selected PZ. The
number of distinct face shapes is, at most, n/2 rounded down to a whole number [2].

Figure 3: Left: rhombic icosahedron, a polar zonohedron of degree 5. Right: rhombic triacontrahedron, a
zonohedron but not a polar zonohedron.

Table 1: Number of faces, edges, vertices and distinct faces for polar zononhedra of degree 3 to 20

Degree Faces Edges Vertices Distinct Faces Edges per Degree
n F E V Fd En

n(n − 1) 2n(n − 1) n(n − 1) + 2 f loor(n/2) E/n
3 6 12 8 1 4
4 12 24 14 2 6
5 20 40 22 2 8
6 30 60 32 3 10
7 42 84 44 3 12
8 56 112 58 4 14
9 72 144 74 4 16

10 90 180 92 5 18
11 110 220 112 5 20
12 132 264 134 6 22
13 156 312 158 6 24
14 182 364 184 7 26
15 210 420 212 7 28
16 240 480 242 8 30
17 272 544 274 8 32
18 306 612 308 9 34
19 342 684 344 9 36
20 380 760 382 10 38



Materials and Optional Cutting Plan

Two approaches are possible:

• Fold one sheet of paper for each unit. Use memo cube paper as a convenient source of colourful squares:
the edge length is usually around 10 cm.

• Alternatively, prepare larger sheets and cut into smaller sheets for folding.

When starting with larger sheets like A4 or letter size paper, the simplest and most accurate method
for cutting is to divide each sheet into either four, eight or 16 rectangles per sheet. However, six or twelve
rectangles are almost as convenient and may be needed when you only have a limited amount of colour paper
(Figure 4). Although scissors indicate which lines to cut, more accurate results come from folding along the
line and slitting with a knife or certain kinds of paper cutters (typically made for opening envelopes).

You can precrease the folds used in step 1: before cutting four, divide the short edge into eighths. For
six, divide the long edge into twelfths. For twelve, divide the short edge into twelfths. Use valley folds in all
divisions.

You can also prepare the crease in step 5: however, the accuracy may be worse than folding each unit
separately.

Note that machine-made paper has grain, which is usually parallel to the longer edge of the oblong.
Try to align the first valley folds along the grain for stronger units. The effect is more noticeable for longer
oblongs, say > 1.5:1. However, longer units can be easier to assemble as the two ends interfere less with each
other. They also make some assemblies more effective, e.g. the partial icosahedron (Figure 8).

Figure 4: Cutting four, six and twelve rectangles from an oblong, e.g. A4 or letter size paper

The Module

Figure 5 shows how to fold a unit and Figure 6 shows how to assemble three units at a vertex. The unit arose
whilst trying to create a different 30-piece assembly: I had found a joining mechanism to make structures
like Jorge Pardo’s Flex-a-ball [9, 8] using a simpler join, yet still as effective. The units can be reused to
make other shapes since the units are easy to disassemble. The joint is related to that used by Tomoko Fuse
in her Action Lizard [1, p. 34].



Folding the unit

If you are using an 
oblong, fold the 
longer edges 
towards the middle, 
leaving a tiny gap, 
say 1 mm.

Fold in half, bringing 
the top down.

Fold all corners 
up.

Open up, lifting the 
flap upwards so that 
the folded corners 
are underneath.

1 2 3 4

Fold the ends 
inwards along the 
edges of the inner 
rectangle: the folded 
corners will appear 
from behind.

Pull out the 
original corners of 
the rectangle.

Fold in half bringing 
the top down.

Fold the flaps 
towards the centre. 
Rotate 90° 
anticlockwise.

5 6 7 8

90°

Fold the top flap: 
bisect the 45° 
angle but leave a 
gap about 1 mm. 

Fold the tip of the 
flap right.

Unfold the tip. 
Turn over (top 
to bottom).

Repeat steps 9 and 
10 to complete the 
unit. Unfold the flaps 
for assembly.

9 10 11 12

Figure 5: Folding the unit



Assembling a Vertex
possible by tucking the flap in step 6 behind the flap folded in step 1.

Hook the top flap 
of the folded unit 
into the pocket of 
the open unit.

Bend (but do not 
fold) the top left 
flap of the second 
unit.

Fold the left flap 
to the right.

Hook the top flap 
of the third unit 
over the tip of the 
first unit.

Fold down the flap 
of the first unit.

Put the top left flap 
of the second unit 
back. 

Fold the flap along 
the existing crease.

Repeat steps 2 to 7 
with any extra units 
needed (not shown 
for this example).
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To finish the 
vertex, fold the 
rear flap of the 
first unit to the 
left. Perform steps 
3 to 5.

Fold the flap down 
of the first unit, the 
put the top left flap 
back. 

Turn over. Use the existing 
creases to tuck the 
tip of the flap of the 
third unit into the 
first unit.

9 10 11 12

Figure 6: Assembling the units



3D Assembly and Colours

To make these flexible assemblies, start with a star of three, four or five colours (Figure 2). Opposite edges of
each rhombic face are the same colours. All edges of the same colour are parallel and form a belt that loops
around the polyhedron.

Collapsing

Each assembly can collapse in many ways. Figure 7 shows some notable configurations. What other shapes
can you find?

Also collapses into hexagon. Also collapses into hexagon.

and also 2 by 2. also 4 by 2 and 3 by 3.

Figure 7: Collapsing the cube (left), rhombic dodecahedron (middle) and rhombic triacontahedron (right)
can make rectangular or hexagonal arrays of squares or triangles.

Other 3D Assemblies

20 units make a partial icosahedron (Figure 8), a generalisation of the rhombohedron. Pulling the poles apart
makes a line and pushing them together makes a pentagonal antiprism (Figure 9). Use longer rectangles for
a more effective assembly. In general, an assembly of degree n needs 4n units.

24 units make a cuboctahedron but this not a good candidate for the Jitterbug transformation. The two
causes are the mutual interference of the projecting flaps of paper and the constrained movement at the joints
(not enough excess paper).

Figure 8: The partial icosahedron (left and middle) made from 20 units will flex and change shape.
However, the cuboctahedron (right) does not flex very well and is not a good candidate for the

Jitterbug transformation.



Figure 9: The partial icosahedron transforming into a pentagonal antiprism

2D Assembly

Curiously, 2D structures can be harder to assemble than the 3D structures (Figure 10). They also do not flex
as well. Reasons include the need for units to to be fully folded in half and the fact that two units do not join
well together.

2
3
4

Units at 
a vertex

Figure 10: A 2D assembly of 16 units. The octagon is a zonogon that can collapse into a line.
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